辐射

E=φAt=14πε0[ρ(x,tr)r^r2+ρ˙(x,tr)crJ˙(x,tr)c2r]dV\vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t} = \frac{1}{4\pi\varepsilon_0} \int\left[\frac{\rho(\vec{x}',t_r)\hat{r}}{r^2} + \frac{\dot{\rho}(\vec{x}',t_r)}{cr} - \frac{\dot{\vec{J}}(\vec{x}',t_r)}{c^2r}\right]dV'

B=×A=μ04π[J(x,tr)r2+J˙(x,tr)cr]×r^dV\vec{B} = \nabla \times \vec{A} = \frac{\mu_0}{4\pi} \int\left[\frac{\vec{J}(\vec{x}',t_r)}{r^2} + \frac{\dot{\vec{J}}(\vec{x}',t_r)}{cr} \right] \times \hat{r} dV'

其中,rho˙=ρt\dot{rho} = \frac{\partial \rho}{\partial t}J˙=Jt\dot{\vec{J}} = \frac{\partial \vec{J}}{\partial t}
考虑在导体球壳表面上求他的总辐射功率:

P=limRRE×HdSP = \lim_{R \to \infty} \oint_{R} \vec{E} \times \vec{H} \cdot d \vec{S}

dS1R2d\vec{S} \propto \frac{1}{R^2}E×H\vec{E} \times \vec{H}包含1R2,1R3,1R4\frac{1}{R^2},\frac{1}{R^3},\frac{1}{R^4}等项
只有ρ˙,J˙\dot{\rho},\dot{\vec{J}}(电荷,电流随时间的变化)才会产生电磁辐射

*时谐场的辐射

ρ(x,t)=ρ(x)eiωt,J(x,t)=J(x)eiωt\rho(\vec{x},t) = \rho(\vec{x})e^{-i\omega t},\quad \vec{J}(\vec{x},t) = \vec{J}(\vec{x})e^{-i\omega t}

φ(x,t)=φ(x)eiωt,A(x,t)=A(x)eiωt\varphi(\vec{x},t) = \varphi(\vec{x})e^{-i\omega t},\quad \vec{A}(\vec{x},t) = \vec{A}(\vec{x})e^{-i\omega t}

电荷量守恒定律:

J+ρt=0Jiωρ=0\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0 \Rightarrow \nabla \cdot \vec{J} - i\omega\rho = 0

ρ,J\rho,\vec{J}是不独立的
Lorentz规范:

A+1c2φt=0Aiωc2φ=0\nabla \cdot \vec{A} + \frac{1}{c^2}\frac{\partial \varphi}{\partial t} = 0 \Rightarrow \nabla \cdot \vec{A} - \frac{i\omega}{c^2}\varphi = 0

φ,A\varphi,\vec{A}不独立
只需考虑J,A\vec{J},\vec{A}

A(x,t)=μ04πJ(x,tr)rdV=μ04πJ(x)eiω(trc)rdV=[μ04πJ(x)eiωrcrdV]eiωt\begin{aligned} \vec{A}(\vec{x},t) &= \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x}',t_r)}{r}dV'\\ &=\frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x}')e^{-i\omega (t - \frac{r}{c})}}{r}dV'\\ &=\left[ \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x}')e^{i\omega \frac{r}{c}}}{r}dV' \right] e^{-i\omega t}\\ \end{aligned}

其中A(x)=μ04πJ(x)eikrrdV\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x}')e^{ikr}}{r}dV',eikre^{ikr}代表由源点x\vec{x}'传播到场点x\vec{x}的相移

  • 近似1:场点远离J\vec{J}分布区域,x>>x|\vec{x}| >> |\vec{x}'|
    x=R|\vec{x}| = Rr=xxxxR=RR^xr = |\vec{x} - \vec{x}'| \approx |\vec{x}| - \vec{x}' \cdot \nabla R = R - \hat{R} \cdot \vec{x}'
    1R=1xx1xx1R=1R+R^xR2\frac{1}{R} = \frac{1}{|\vec{x} - \vec{x}'|} \approx \frac{1}{|\vec{x}|} -\vec{x}' \cdot \nabla \frac{1}{R} = \frac{1}{R} + \frac{\hat{R} \cdot \vec{x}'}{R^2}

A(x)μ04π(1R+R^xR2)eik(RR^x)J(x)dV\begin{aligned} \vec{A}(\vec{x}) &\approx \frac{\mu_0}{4\pi} \int \left(\frac{1}{R} + \frac{\hat{R} \cdot \vec{x}'}{R^2} \right) e^{ik(R - \hat{R} \cdot \vec{x}')}\vec{J}(\vec{x}')dV'\\ \end{aligned}

  • 近似2:J\vec{J}分布区域的尺度远远小于电磁波的波长

max{x}<<λ=2πkmax\left\{|\vec{x}'|\right\} << \lambda = \frac{2\pi}{k}

kx<<1|k\vec{x}'| << 1

eikxR^1ikxR^e^{-ik \vec{x}' \cdot \hat{R}} \approx 1 - ik \vec{x}' \cdot \hat{R}

A(x)=μ0eikR4πR[1+(1Rik)xR^+]J(x)dV\vec{A}(\vec{x}) = \frac{\mu_0 e^{ikR}}{4\pi R} \int \left[1 + (\frac{1}{R} - ik)\vec{x}' \cdot \hat{R} + \cdots \right] \vec{J}(\vec{x}')dV'

第一项:

A(x)=μ0eikR4πRJ(x)dV\vec{A}(\vec{x}) = \frac{\mu_0 e^{ikR}}{4\pi R} \int \vec{J}(\vec{x}')dV'

*电偶极辐射:

J(x)dV=dP(t)dt=iωP(t)\int \vec{J}(\vec{x}')dV' = \frac{d\vec{P}(t)}{dt} = -i\omega \vec{P}(t)

J(x,t)=Jeiωt,P(t)=P0eiωt\vec{J}(\vec{x}',t) = \vec{J}e^{-i\omega t},\vec{P}(t) = \vec{P}_0 e^{-i\omega t}

J(x)dV=iωP0\int \vec{J}(\vec{x}')dV' = -i\omega \vec{P}_0

A(x)=iωμ0eikR4πRP0\vec{A}(\vec{x}) = \frac{i\omega \mu_0 e^{ikR}}{4\pi R} \vec{P}_0

电磁场:

B=×AE=1iωμ0ε0×B=ick×B\begin{aligned} \vec{B} &= \nabla \times \vec{A}\\ \vec{E} &= -\frac{1}{-i \omega \mu_0 \varepsilon_0} \nabla \times \vec{B} = i\frac{c}{k} \nabla \times \vec{B} \end{aligned}

在球坐标系下:

B=P0k34πε0c[i(kR)2+1kR]sinθei(kRωt)ϕ^E=2P0k34πε0[1(kR)3i(kR)2]cosθei(kRωt)R^+P0k34πε0[1(kR)3i(kR)21kR]sinθei(kRωt)θ^\begin{aligned} \vec{B} &= -\frac{P_0k^3}{4\pi \varepsilon_0 c}\left[\frac{i}{(kR)^2}+ \frac{1}{kR}\right]\sin \theta e^{i(kR - \omega t)} \hat{\phi}\\ \vec{E} &= -\frac{2P_0k^3}{4\pi \varepsilon_0}\left[\frac{1}{(kR)^3} - \frac{i}{(kR)^2}\right]\cos \theta e^{i(kR - \omega t)} \hat{R}\\ &+\frac{P_0k^3}{4\pi \varepsilon_0}\left[\frac{1}{(kR)^3} - \frac{i}{(kR)^2} - \frac{1}{kR}\right]\sin \theta e^{i(kR - \omega t)} \hat{\theta}\\ \end{aligned}

  1. 近区:R<<λ=2πkR << \lambda = \frac{2\pi}{k}kR<<1kR << 1

BiP0k4πε0cR2sinθeiωtϕ^E2P04πε0R3cosθeiωtR^+P04πε0R3sinθeiωtθ^=14πε03(RP)RR2PR5\begin{aligned} \vec{B} &\approx -\frac{iP_0k}{4\pi \varepsilon_0 cR^2}\sin \theta e^{i\omega t} \hat{\phi}\\ \vec{E} &\approx -\frac{2P_0}{4\pi \varepsilon_0 R^3}\cos \theta e^{i\omega t} \hat{R} + \frac{P_0}{4\pi \varepsilon_0 R^3}\sin \theta e^{-i\omega t} \hat{\theta}\\ &= \frac{1}{4\pi \varepsilon_0} \frac{3(\vec{R}\cdot \vec{P})\vec{R} - R^2 \vec{P}}{R^5} \end{aligned}

与静场分布类似
2. 远区:R>>λ=2πkR >> \lambda = \frac{2\pi}{k}kR>>1kR >> 1

BP0k34πε0cRsinθei(kRωt)ϕ^EP0k24πε0Rsinθei(kRωt)θ^\begin{aligned} \vec{B} &\approx -\frac{P_0k^3}{4\pi \varepsilon_0 cR}\sin \theta e^{i(kR - \omega t)} \hat{\phi}\\ \vec{E} &\approx -\frac{P_0k^2}{4\pi \varepsilon_0 R}\sin \theta e^{i(kR - \omega t)} \hat{\theta}\\ \end{aligned}

以辐射场为主
H=R^×Eη\vec{H} = \hat{R} \times \frac{\vec{E}}{\eta},其中η\eta为真空波阻抗
平均能流:

<S>=Re{E×H2}=P02ω4sin2θ32π2ε0c3R2R^sin2θ<\vec{S}> = Re \left\{\frac{\vec{E} \times \vec{H}^*}{2}\right\} = \frac{|P_0|^2\omega^4\sin^2\theta}{32\pi^2 \varepsilon_0 c^3 R^2} \hat{R} \propto \sin^2\theta

考虑总辐射功率

P=<S>dS=P02ω412πε0c3ω4P = \oint <\vec{S}> \cdot d\vec{S} = \frac{|P_0|^2\omega^4}{12\pi \varepsilon_0 c^3} \propto \omega^4

  1. 过渡区:RλR \sim \lambda
    E,B\vec{E},\vec{B}介于近区和远区之间

*短天线(L<<λL<<\lambda)

这里应该有一张图

I(z,t)=I0(12zL)eiωt,z<L2I(z,t) = I_0(1-\frac{2|z|}{L})e^{-i\omega t},\quad |z|<\frac{L}{2}

电偶极矩振幅:

P0=1iωJ(x)dV=iI0L2ωe^z\vec{P}_0 = -\frac{1}{i\omega} \int \vec{J}(\vec{x}')dV' = \frac{i I_0 L}{2\omega}\hat{e}_z

总辐射功率:

P=πηI0212(Lλ)2=I02Rrad2P = \frac{\pi \eta I^2_0}{12}(\frac{L}{\lambda})^2 = \frac{I_0^2R_{rad}}{2}

其中Rrad=πη6(Lλ)2R_{rad} = \frac{\pi \eta}{6}(\frac{L}{\lambda})^2为辐射阻抗
不妨设Lλ=0.01\frac{L}{\lambda} = 0.01Rrad=0.02ΩR_{rad} = 0.02 \Omega

*半波天线(L=λ2L = \frac{\lambda}{2})

I(z,t)=I0coskzeiωtI(z,t) = I_0 \cos kz e^{-i\omega t}

其中zL2|z|\leq \frac{L}{2}

A(x)=μ04πJ(x)eikrrdV\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x}')e^{ikr}}{r}dV'

在远场区,rRzcosθr \approx R - z\cos\theta

A(x)μ0I0eikR2πkRcos(π2cosθ)sin2θe^z\vec{A}(\vec{x}) \approx \frac{\mu_0I_0e^{ikR}}{2\pi k R} \frac{\cos(\frac{\pi}{2} \cos\theta)}{\sin^2\theta} \hat{e}_z

辐射能流:

<S>cos2(π2cosθ)sin2θ<\vec{S}> \propto \frac{\cos^2(\frac{\pi}{2} \cos\theta)}{\sin^2\theta}

垂直于天线方向辐射最大
辐射阻抗:

Rrad2.44μ0c4π=73.2ΩR_{rad} \approx 2.44\frac{\mu_0c}{4\pi} = 73.2\Omega