*各种波导

常见的有矩形,圆形,同轴,平行双线,平板(微带线)等

*波导中的导波模式

一般取沿着波导的传播方向为z轴

E=E(x,y)eiβz\vec{E} = \vec{E}(x,y) e^{i \beta z}

H=H(x,y)eiβz\vec{H} = \vec{H}(x,y) e^{i \beta z}

有两种解法

  • 考虑

×E=iωμH×H=iωεE\begin{aligned} &\nabla \times \vec{E} = i \omega \mu \vec{H}\\ &\nabla \times \vec{H} = -i \omega \varepsilon \vec{E} \end{aligned}

使用纵横分解法(见教材)

  • 考虑

2E+k2E=0E=0H=1iωμ×E\begin{aligned} &\nabla^2 \vec{E} + k^2 \vec{E} = 0\\ &\nabla \cdot \vec{E} = 0\\ & \vec{H} = \frac{1}{i\omega\mu} \nabla \times \vec{E} \end{aligned}

分离变量法求E\vec{E},再求H\vec{H}

*纵横分解法

E=E(x,y)eiβz=(Et+Ez)eiβz\vec{E} = \vec{E}(x,y)e^{i \beta z} =(\vec{E}_t + \vec{E}_z)e^{i \beta z}

H=H(x,y)eiβz=(Ht+Hz)eiβz\vec{H} = \vec{H}(x,y)e^{i \beta z} =(\vec{H}_t + \vec{H}_z)e^{i \beta z}

这里的Et\vec{E}_t是横向,Ez\vec{E}_z是纵向
并且我们考虑

=t+e^zz\nabla = \nabla_t + \hat{e}_z \frac{\partial}{\partial z}

那么有

t2Ez+kc2Ez=0t2Hz+kc2Hz=0Et=ikc2(βtEzωμe^z×tHz)Ht=ikc2(βtHz+ωεe^z×tEz)\begin{aligned} &\nabla^2_t E_z + k^2_c E_z = 0\\ &\nabla^2_t H_z + k^2_c H_z = 0\\ &\vec{E}_t = \frac{i}{k_c^2}(\beta \nabla_t E_z - \omega \mu \hat{e}_z \times \nabla_t H_z)\\ &\vec{H}_t = \frac{i}{k_c^2}(\beta \nabla_t H_z + \omega \varepsilon \hat{e}_z \times \nabla_t E_z)\\ \end{aligned}

前两个方程是纵向场方程,其中kc2=k2β2k_c^2 = k^2-\beta^2
求解出纵向场后,便可通过后两个方程求出横向场
如果kc0k_c \neq 0

  • Ez=0E_z = 0,Hz=0H_z = 0,称为TE模式
  • Ez0E_z \neq 0,Hz=0H_z = 0,称为TM模式
  • Ez=0E_z = 0,Hz=0H_z = 0,必然有kc=0k_c = 0,称为TEM模式
    此时有

t×Et=0tEt=0Ht=kωμe^z×Et=e^z×EtηTEM\begin{aligned} &\nabla_t \times \vec{E}_t = 0\\ &\nabla_t \cdot \vec{E}_t = 0\\ &H_t = \frac{k}{\omega \mu} \hat{e}_z \times \vec{E}_t = \hat{e}_z \times \frac{\vec{E}_t}{\eta_{TEM}} \end{aligned}

其中ηTEM=με\eta_{TEM} = \sqrt{\frac{\mu}{\varepsilon}}
只有当波导横截面支持非零二维静电场时,波导才支持TEM模式
单导体封闭波导一定不能支持TEM模式,多导体波导可以支持TEM模式

*例

考虑矩形波导中的TM模式
纵向电场EzE_z满足:

t2Ez+kc2Ez=0\nabla^2_t E_z + k^2_c E_z = 0

Ez=X(x)Y(y)E_z = X(x)Y(y)

1Xd2Xdx2=kx21Yd2Ydy2=ky2kx2+ky2=kc2\begin{aligned} &\frac{1}{X} \frac{d^2 X}{dx^2} = -k_x^2\\ &\frac{1}{Y} \frac{d^2 Y}{dy^2} = -k_y^2\\ &k_x^2 + k_y^2 = k_c^2 \end{aligned}

由边界条件Ezx=0=Ezx=a=0X(0)=0,X(a)=0E_z |_{x=0} = E_z |_{x=a} = 0 \Rightarrow X(0) = 0,X(a) = 0
所以

X(x)=AsinmπaxX(x) = A \sin \frac{m \pi}{a} x

同理有

Y(y)=BsinnπbyY(y) = B \sin \frac{n \pi}{b} y

所以

Ez=E0sinmπaxsinnπbyE_z = E_0 \sin \frac{m \pi}{a} x \sin \frac{n \pi}{b} y

kc2=m2π2a2+n2π2b2k_c^2 = \frac{m^2 \pi^2}{a^2} + \frac{n^2 \pi^2}{b^2}

Et=iβkc2mπaE0cosmπaxsinnπbye^x+iβkc2nπbE0sinmπaxcosnπbye^y\vec{E}_t = \frac{i\beta}{k_c^2}\frac{m\pi}{a} E_0 \cos \frac{m \pi}{a} x \sin \frac{n \pi}{b} y \hat{e}_x + \frac{i\beta}{k_c^2}\frac{n\pi}{b} E_0 \sin \frac{m \pi}{a} x \cos \frac{n \pi}{b} y \hat{e}_y

Ht=iωεkc2nπbE0sinmπaxcosnπbye^x+iωεkc2mπaE0cosmπaxsinnπbye^y\vec{H}_t = -\frac{i\omega \varepsilon}{k_c^2} \frac{n\pi}{b} E_0 \sin \frac{m \pi}{a} x \cos \frac{n \pi}{b} y \hat{e}_x + \frac{i\omega \varepsilon}{k_c^2} \frac{m\pi}{a} E_0 \cos \frac{m \pi}{a} x \sin \frac{n \pi}{b} y \hat{e}_y

  • iE记做TMmnTM_{mn}模式
  • 基模为TMnTM_{n}
  • 纵向波矢 β=k2kc2=1cω2ωc2\beta = \sqrt{k^2 - k_c^2} = \frac{1}{c} \sqrt{\omega^2 - \omega^2_c}

ωc=ckc=cm2π2a2+n2π2b2\omega_c = ck_c = c\sqrt{\frac{m^2 \pi^2}{a^2} + \frac{n^2 \pi^2}{b^2}}

对于某一给定的模式TMmnTM_{mn}ωc\omega_c一定,只有当ω>ωc\omega > \omega_c时,β\beta才是实数,此时电磁场才是行波(导波)
ωc\omega_c称为截止频率

  • 相速度

Vp=ωβ=c1ωc2ω2V_p = \frac{\omega}{\beta} = \frac{c}{\sqrt{1 - \frac{\omega_c^2}{\omega^2}}}

称为波导色散(模式色散)

  • 群速度

Vg=dωdβ=c1ωc2ω2V_g = \frac{d\omega}{d\beta} = c\sqrt{1 - \frac{\omega_c^2}{\omega^2}}

群速度色散

TE模式

基模:TE01TE_{01}或者TE10TE_{10}

TEM模式

  • kc=0,β=kk_c = 0,\beta = k
  • 截止频率ωc=ckc=0\omega_c = ck_c = 0
  • 无模式色散

谐振腔

kx=mπa,ky=nπb,kz=pπck_x = \frac{m\pi}{a},k_y = \frac{n\pi}{b},k_z = \frac{p\pi}{c}

kx2+ky2+kz2=k2=ωμεk_x^2 + k_y^2 + k_z^2 = k^2 = \omega \mu \varepsilon

所以角频率

ω=1μεkx2+ky2+kz2\omega = \frac{1}{\sqrt{\mu \varepsilon}} \sqrt{k_x^2 + k_y^2 + k_z^2}

真空中就有

ω=ckx2+ky2+kz2\omega = c \sqrt{k_x^2 + k_y^2 + k_z^2}

*电磁场的辐射

时域分析:
已知全空间中随着时间变化的ρ,J\rho,\vec{J}
E,B\vec{E},\vec{B}

×E=Bt×B=μ0J+μ0ε0EtE=ρε0B=0\begin{aligned} &\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\\ &\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}\\ &\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\\ &\nabla \cdot \vec{B} = 0 \end{aligned}

(一)

B=0B=×A\nabla \cdot \vec{B} = 0 \Rightarrow \vec{B} = \nabla \times \vec{A}

(二)
B=×A\vec{B} = \nabla \times \vec{A}代入,有

×E=t(×A)=×At\nabla \times \vec{E} = -\frac{\partial}{\partial t} (\nabla \times \vec{A}) = -\nabla \times \frac{\partial \vec{A}}{\partial t}

×(E+At)=0E+At=ϕ\nabla \times (\vec{E} + \frac{\partial \vec{A}}{\partial t}) = 0 \Rightarrow \vec{E} + \frac{\partial \vec{A}}{\partial t} = -\nabla \phi

E=ϕAt\vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}

即存在标势ϕ\phi和矢势A\vec{A},使得

E=ϕAtB=×A\begin{aligned} \vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}\\ \vec{B} = \nabla \times \vec{A} \end{aligned}

(三)将E,B\vec{E},\vec{B}代入Maxwell方程组

(ϕ+At)=ρε02ϕ+t(A)=ρε0\begin{aligned} -\nabla \cdot (\nabla \phi + \frac{\partial \vec{A}}{\partial t}) &= \frac{\rho}{\varepsilon_0}\\ \nabla^2 \phi + \frac{\partial}{\partial t} (\nabla \cdot \vec{A}) &= -\frac{\rho}{\varepsilon_0}\\ \end{aligned}

(四)将E,B\vec{E},\vec{B}代入(三)的结论

×(×A)=μ0J+μ0ε0t(ϕAt)2A1c22At2(A+1c2ϕt)=μ0J\begin{aligned} &\nabla \times (\nabla \times \vec{A}) = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} (-\nabla \phi - \frac{\partial \vec{A}}{\partial t})\\ &\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} -\nabla (\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t}) = -\mu_0 \vec{J} \end{aligned}

ϕ,A\phi,\vec{A}不唯一
假设他们满足

E=ϕAtB=×A\begin{aligned} &\vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}\\ &\vec{B} = \nabla \times \vec{A} \end{aligned}

取(规范变换)

φ=φAtA=A+Ψ\begin{aligned} &\varphi' = \varphi - \frac{\partial \vec{A}}{\partial t}\\ &\vec{A}' = \vec{A} + \nabla \Psi \end{aligned}

则:

E=φAt=EB=×A=B\begin{aligned} &\vec{E}' = -\nabla \varphi' - \frac{\partial \vec{A}'}{\partial t} = \vec{E}\\ &\vec{B}' = \nabla \times \vec{A}' = \vec{B} \end{aligned}

附加约束条件:

  • A=0\nabla \cdot \vec{A} = 0(Coulomb规范)

2φ=ρε02A1c22At2=μ0J+1c2t(φ)\begin{aligned} &\nabla^2 \varphi = -\frac{\rho}{\varepsilon_0}\\ &\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial}{\partial t}(\nabla \varphi) \end{aligned}

φ(x,t)=14πε0ρ(x,t)rdV\varphi(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{x'},t)}{r} dV'

  • A+1c2φt=0\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0(Lorentz规范)

2φ1c22φt2=ρε02A1c22At2=μ0J\begin{aligned} &\nabla^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = -\frac{\rho}{\varepsilon_0}\\ &\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J} \end{aligned}

即d’Alembert方程
推迟势解:

φ(x,t)=14πε0ρ(x,tr)rdVA(x,t)=μ04πJ(x,tr)rdV\begin{aligned} &\varphi(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{x'},t_r)}{r} dV'\\ &\vec{A}(\vec{x},t) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x'},t_r)}{r} dV' \end{aligned}

其中tr=trct_r = t - \frac{r}{c}r=xxr = |\vec{x} - \vec{x'}|
被称为推迟时间