*导电介质

电荷与电流关系:J=ρt\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}
电流与电场关系:J=σE\vec{J} = \sigma \vec{E}

σE+ρt=0\sigma \nabla \cdot \vec{E} + \frac{\partial \rho}{\partial t} = 0

电场与电荷满足:

E=ρε\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon}

σερ+ρt=0\frac{\sigma}{\varepsilon} \rho + \frac{\partial \rho}{\partial t} = 0

ρ=ρ0eσεt=ρ0etτ\rho = \rho_0 e^{-\frac{\sigma}{\varepsilon} t} = \rho_0 e^{-\frac{t}{\tau}}

其中τ=εσ\tau = \frac{\varepsilon}{\sigma}称为特征时间。
τ=εσT=2πω\tau = \frac{\varepsilon}{\sigma} \ll T = \frac{2\pi}{\omega}时,即$\frac{\sigma}{\omega\varepsilon} \gg 1 $ 时,称为良导体
σ,ε\sigma,\varepsilon一定时,ω\omega越小,介质越接近良导体

良导体内部,近似无净电荷积累,ρ0\rho \approx 0

*良导体的Maxwell方程组

×E=iωB×H=JiωD=σEiωεE=iω(ε+iσω)E=iωε~EE=0(ρ0)B=0\begin{aligned} &\nabla \times \vec{E} = i \omega \vec{B}\\ &\nabla \times \vec{H} = \vec{J} - i \omega \vec{D} = \sigma \vec{E} - i \omega \varepsilon \vec{E} = -i \omega (\varepsilon + i \frac{\sigma}{\omega}) \vec{E} = -i \omega \tilde{\varepsilon} \vec{E}\\ &\nabla \cdot \vec{E} = 0 \quad (\rho \approx 0)\\ &\nabla \cdot \vec{B} = 0 \end{aligned}

其中ε~=ε+iσω\tilde{\varepsilon} = \varepsilon + i \frac{\sigma}{\omega}称为复介电常数,虚部代表损耗
复折射率:n~=ε~r=εr+iσωε0\tilde{n} = \sqrt{\tilde{\varepsilon}_r} = \sqrt{\varepsilon_r+i \frac{\sigma}{\omega \varepsilon_0}}

*良导体中的平面电磁波

Helmholtz方程:

2E+k~2E=0\nabla^2 \vec{E} + \tilde{k}^2 \vec{E} = 0

其中k~=ωμε~\tilde{k} = \omega \sqrt{\mu \tilde{\varepsilon}}
假设E=E0eik~x\vec{E} = \vec{E_0} e^{i \tilde{\vec{k}} \cdot \vec{x}}

不妨设k~=β+iα\tilde{\vec{k}} = \vec{\beta} + i \vec{\alpha},则

E=E0eαxeiβx\vec{E} = \vec{E_0} e^{-\vec{\alpha} \cdot \vec{x}} e^{i \vec{\beta} \cdot \vec{x}}

可以被分解为复振幅和相位沿β\vec{\beta}传播的平面波

等振幅面垂直于α\vec{\alpha},等相位面垂直于β\vec{\beta}
α,β\vec{\alpha},\vec{\beta}未必平行

*电磁波在良导体表面的反射与透射

考虑入射、反射、透射电磁波,有他们在界面方向上的波矢分量关系

kisinθi=krsinθr=ktsinθtk_i \sin \theta_i = k_r \sin \theta_r = k_t \sin \theta_t

θr=θi\theta_r = \theta_i

sinθisinθt=βki\frac{\sin \theta_i}{\sin \theta_t} = \frac{\beta}{k_i}

考虑垂直入射场景:

θi=θr=θt=0\theta_i = \theta_r = \theta_t = 0

αβez\vec{\alpha} \parallel \vec{\beta} \parallel \vec{e_z}

k~2=(β+iα)2=ω2με~=ω2μ(ε+iσω)\tilde{\vec{k}}^2 = (\vec{\beta} + i \vec{\alpha})^2 = \omega^2 \mu \tilde{\varepsilon} = \omega^2 \mu(\varepsilon + i \frac{\sigma}{\omega})

α=ωμσ[12(1+σ2ω2ε21)]12ωσμ2\alpha = \omega \sqrt{\mu \sigma}\left [ \frac{1}{2}(\sqrt{1 + \frac{\sigma^2}{\omega^2 \varepsilon^2}}-1)\right]^{\frac{1}{2}} \approx \sqrt{\frac{\omega \sigma \mu}{2}}

β=ωμε[12(1+σ2ω2ε2+1)]12ωσμ2\beta = \omega \sqrt{\mu \varepsilon}\left [ \frac{1}{2}(\sqrt{1 + \frac{\sigma^2}{\omega^2 \varepsilon^2}}+1)\right]^{\frac{1}{2}} \approx \sqrt{\frac{\omega \sigma \mu}{2}}

以上近似均在σωε1\frac{\sigma}{\omega \varepsilon} \gg 1时成立

穿透深度

即透射波衰减到入射波的1e\frac{1}{e}时,在介质中传播的距离

δ=1α2ωμσ\delta = \frac{1}{\alpha} \approx \sqrt{\frac{2}{\omega \mu \sigma}}

电磁波角频率ω\omega越大,穿透深度越小
称为趋肤效应

磁场

Ht=H0teαzeiβz\vec{H}_t = \vec{H}_{0t} e^{-\alpha z} e^{i \beta z}

H0t=e^z×E0tη\vec{H}_{0t} = \hat{e}_z \times \frac{\vec{E}_{0t}}{\eta}

其中η=με~=με+iσω=με(1+iσωε)1/2ωμσeiπ4\eta = \sqrt{\frac{\mu}{\tilde{\varepsilon}}} = \sqrt{\frac{\mu}{\varepsilon + i \frac{\sigma}{\omega}}} = \sqrt{\frac{\mu}{\varepsilon}} (1 + i \frac{\sigma}{\omega \varepsilon})^{-1/2} \approx \sqrt{\frac{\omega \mu}{\sigma}} e^{i \frac{\pi}{4}}
所以

H0t=ωμσeiπ4e^z×E0t\vec{H}_{0t} = \sqrt{\frac{\omega \mu}{\sigma}} e^{i \frac{\pi}{4}} \hat{e}_z \times \vec{E}_{0t}

发现以下几个结论:

  • H\vec{H}E\vec{E}相位相差π4\frac{\pi}{4}
  • <We><Wm>=ε4E0t2μ4H0t2=ωεσ1\frac{<W_e>}{<W_m>} = \frac{\frac{\varepsilon}{4}|\vec{E}_{0t}|^2}{\frac{\mu}{4}|\vec{H}_{0t}|^2} = \frac{\omega\varepsilon}{\sigma} \ll 1
    良导体中电磁波能量以磁场能量为主
  • 幅度反射系数:

E0rE0i=n1cosθin2cosθtn1cosθi+n2cosθt=1εr(1+iσωε)1+εr(1+iσωε)1σωεeiπ41+σωεeiπ4=2ωε0σ1i2ωε0σ+1+i\frac{E_{0r}}{E_{0i}} = \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} = \frac{1 - \sqrt{\varepsilon_r(1+i\frac{\sigma}{\omega \varepsilon})}}{1 + \sqrt{\varepsilon_r(1+i\frac{\sigma}{\omega \varepsilon})} } \approx \frac{1 - \sqrt{\frac{\sigma}{\omega \varepsilon}}e^{i\frac{\pi}{4}}}{1 + \sqrt{\frac{\sigma}{\omega \varepsilon}}e^{i\frac{\pi}{4}}} =\frac {\sqrt{\frac{2\omega \varepsilon_0}{\sigma}} - 1 - i}{\sqrt{\frac{2\omega \varepsilon_0}{\sigma}} + 1 + i}

功率反射率:

R=PrPi=E0rE0i2122ωε0σ1R = \frac{P_r}{P_i} = |\frac{E_{0r}}{E_{0i}}|^2 \approx 1 - 2\sqrt{\frac{2\omega \varepsilon_0}{\sigma}} \approx 1

  • 焦耳热
    电流:J=σEt\vec{J} = \sigma \vec{E}_t
    焦耳热功率密度:P=EtJ2=σ2Et2P = \frac{\vec{E}_t \cdot \vec{J}^*}{2} = \frac{\sigma}{2}|\vec{E}_t|^2
    单位面积发热功率:

Pd=0σE0t22dz=σE0t24α=σδE0i24P_d = \int^\infty_0 \frac{\sigma|\vec{E}_{0t}|^2}{2} d z = \frac{\sigma|\vec{E}_{0t}|^2}{4\alpha} = \frac{\sigma\delta |\vec{E}_{0i}|^2}{4}

"表面“电流密度:

Js=0σEtdz=σE0iαiβσδE0i1i\vec{J}_s = \int^\infty_0 \sigma \vec{E}_t d z = \frac{\sigma\vec{E}_{0i}}{\alpha - i\beta} \approx \frac{\sigma\delta\vec{E}_{0i}}{1 - i}

PdP_dJs\vec{J}_s关系写作:

Pd=12Js2RSP_d = \frac{1}{2} |\vec{J}_s|^2 R_S

其中RS=1σδR_S = \frac{1}{\sigma\delta}称为表面电阻

E0tRωϵ0σeiπ4E0i\vec{E}_{0t} \approx R\sqrt{\frac{\omega \epsilon_0}{\sigma}}e^{-i \frac{\pi}{4}}\vec{E}_{0i}

在实际运用中,JS\vec{J_S}可以通过将良导体近似为理想导体计算。电磁波频率越高,表面电阻越大,焦耳热功率越大,电磁波能量损耗越大

*理想导体

σ\sigma \rightarrow \infty的时候,称为理想导体
穿透深度:δ0\delta \rightarrow 0
理想导体内部无电磁场:E=0,H=0\vec{E} = 0,\vec{H} = 0
电荷电流集中在表面

电磁波入射到理想导体表面时,边值关系:

n^×E=0n^×H=Jsn^E=ρsε0n^H=0\begin{aligned} &\hat{n} \times \vec{E} = 0\\ &\hat{n} \times \vec{H} = \vec{J}_s\\ &\hat{n} \cdot \vec{E} = \frac{\rho_s}{\varepsilon_0}\\ &\hat{n} \cdot \vec{H} = 0 \end{aligned}

其中第一条是该问题的**「本质约束」,第二条为「表面电流」,第三条为「表面电荷」**。

*例题

一均匀平面波入射至理想导体平面,电场垂直于入射面(N波),入射角为θ\theta,求空间电磁波

解:反射角θr=θ\theta_r = \theta,入射波和反射波分贝表示为

Ei=e^yE0ei(kxx+kzz)Er=e^yE0ei(kxx+kzz)\begin{aligned} \vec{E}_i &= \hat{e}_y E_0 e^{i(k_x x + k_z z)}\\ \vec{E}_r &= \hat{e}_y E_0 e^{i(-k_x x + k_z z)} \end{aligned}

总电场:E=Ei+Er\vec{E} = \vec{E}_i + \vec{E}_r
在理想导体表面