*时谐场

E=E(x)eiωt\vec{E} = \vec{E}(\vec{x}) e^{-i\omega t}

H=H(x)eiωt\vec{H} = \vec{H}(\vec{x}) e^{-i\omega t}

复振幅满足频域Maxwell方程组

×E=iωB×H=JiωDD=ρB=0\begin{aligned} &\nabla \times \vec{E} = -i\omega \vec{B} \\ &\nabla \times \vec{H} = \vec{J} - i\omega \vec{D} \\ &\nabla \cdot \vec{D} = \rho \\ &\nabla \cdot \vec{B} = 0 \end{aligned}

复数Poynting矢量

S~=12E×H\widetilde{\vec{S}} = \frac{1}{2}\vec{E} \times \vec{H}^*

S=Re{S~}\langle \vec{S} \rangle = Re\{\widetilde{\vec{S}}\}

复数Poynting定理

S~=12(E×H)=12E(E×H)12H(E×H)=12(×E)H+12(×H)E=12iωBH+12(JiωD)E=iω2BH+iω2ED+12EJ\begin{aligned} -\nabla \cdot \widetilde{\vec{S}} &= \frac{1}{2} \cdot \left(\vec{E} \times \vec{H}^* \right) \\ &= -\frac{1}{2} \nabla_E \cdot (\vec{E} \times \vec{H}^*) - \frac{1}{2} \nabla_H \cdot (\vec{E} \times \vec{H}^*)\\ &= -\frac{1}{2} (\nabla \times \vec{E})\cdot \vec{H}^* + \frac{1}{2} (\nabla \times \vec{H}^*)\cdot \vec{E}\\ &= -\frac{1}{2} i\omega \vec{B} \cdot \vec{H}^* + \frac{1}{2} (\vec{J}^* - i\omega \vec{D}^*)\cdot \vec{E}\\ &= -\frac{i\omega}{2} \vec{B} \cdot \vec{H}^* + \frac{i\omega}{2} \vec{E} \cdot \vec{D}^* + \frac{1}{2} \vec{E}\cdot \vec{J}^*\\ \end{aligned}

定义复数电场能量密度:

We~=ED4\widetilde{W_e} = \frac{\vec{E} \cdot \vec{D}^*}{4}

磁场能量密度

Wm~=BH4\widetilde{W_m} = \frac{\vec{B} \cdot \vec{H}^*}{4}

We=Re{ED4},Wm=Re{BH4}\langle W_e \rangle = Re\{\frac{\vec{E} \cdot \vec{D}^*}{4}\}, \langle W_m \rangle = Re\{\frac{\vec{B} \cdot \vec{H}^*}{4}\}

S~=i2ω(We~Wm~)+EJ2-\nabla \cdot \widetilde{\vec{S}} = i2\omega(\widetilde{W_e} - \widetilde{W_m}) + \frac{\vec{E} \cdot \vec{J}^*}{2}

复数Poynting定理

We~=ED4,D=εE=(ε+iε)E\widetilde{W_e} = \frac{\vec{E} \cdot \vec{D}^*}{4}, \vec{D} = \varepsilon \vec{E} = (\varepsilon' + i\varepsilon'') \vec{E}

We~=εE24iεE24\widetilde{W_e} = \frac{\varepsilon' |\vec{E}|^2}{4} - \frac{i\varepsilon'' |\vec{E}|^2}{4}

Wm~=BH4,B=μH=(μ+iμ)H\widetilde{W_m} = \frac{\vec{B} \cdot \vec{H}^*}{4}, \vec{B} = \mu \vec{H} = (\mu' + i\mu'') \vec{H}

Wm~=μH24+iμH24\widetilde{W_m} = \frac{\mu' |\vec{H}|^2}{4} + \frac{i\mu'' |\vec{H}|^2}{4}

S=ωε2E2+ωμ2H2+Re{EJ2}-\nabla \cdot \langle \vec{S} \rangle = \frac{\omega \varepsilon''}{2} |\vec{E}|^2 + \frac{\omega \mu''}{2} |\vec{H}|^2 + Re\{\frac{\vec{E} \cdot \vec{J}^*}{2}\}

其中第一项为极化损耗,第二项为磁化损耗,第三项为焦耳热

*时变电磁场

我们主要考察时变电磁场的**辐射(ρ0,J0\rho \neq 0, \vec{J} \neq 0传播(ρ=0,J=0\rho = 0, \vec{J} = 0)**问题(尤其是传播问题)

*时域分析电磁场传播

ρ=0,J=0\rho = 0,\vec{J} = 0时,时域Maxwell方程组为

×E=Bt×H=DtD=0B=0\begin{aligned} &\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ &\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} \\ &\nabla \cdot \vec{D} = 0 \\ &\nabla \cdot \vec{B} = 0 \end{aligned}

真空中,D=ε0E,B=μ0H\vec{D} = \varepsilon_0 \vec{E}, \vec{B} = \mu_0 \vec{H}(下面的结果均依赖于这里的简单介质性质)
对方程组的第一个方程取旋度

×(×E)=t(×B)(E)2E=t(×B)2Eμ0ε02Et2=02E1c22Et2=0\begin{aligned} \nabla \times (\nabla \times \vec{E}) &= -\frac{\partial}{\partial t} (\nabla \times \vec{B}) \\ \nabla(\nabla\cdot \vec{E}) - \nabla^2 \vec{E} &= -\frac{\partial}{\partial t} (\nabla \times \vec{B}) \\ \nabla^2 \vec{E} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} &= 0 \\ \nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} &= 0 \end{aligned}

最后一个方程就是波动方程

一维波动方程:

2Ax21c22At2=0\frac{\partial^2 A}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = 0

也即

A(x,t)=f(x±ct)A(x,t) = f(x \pm ct)

但是如果考虑色散介质的情况,从时域上分析,问题会复杂得多

*频域分析电磁场传播

为了解决上面的问题,我们引入频域分析方法

对于时谐场

×E=iωB×H=iωDD=0B=0\begin{aligned} &\nabla \times \vec{E} = -i\omega \vec{B} \\ &\nabla \times \vec{H} = - i\omega \vec{D} \\ &\nabla \cdot \vec{D} = 0 \\ &\nabla \cdot \vec{B} = 0 \end{aligned}

前两条方程保证了后两条方程成立
因此我们考虑将第一条方程代入第二条方程

B=1iω×E\vec{B} = \frac{1}{i\omega} \nabla \times \vec{E}

1iωμ×(×E)=iωεE\frac{1}{i\omega \mu} \nabla \times (\nabla \times \vec{E}) = -i\omega \varepsilon \vec{E}

1iωμ[(E)2E]=iωεE\frac{1}{i\omega \mu}\left[\nabla(\nabla \cdot \vec{E}) - \nabla^2 \vec{E}\right] = -i\omega \varepsilon \vec{E}

最终我们得到

2E+k2E=0,(k=ωμε)E=0H=1iωμ×E\begin{aligned} &\nabla^2 \vec{E} + k^2 \vec{E} = 0, (k=\omega \sqrt{\mu \varepsilon})\\ &\nabla \cdot \vec{E} = 0\\ &\vec{H} = \frac{1}{i\omega \mu} \nabla \times \vec{E} \end{aligned}

亦等价于

2H+k2H=0,(k=ωμε)H=0E=1iωμ×H\begin{aligned} &\nabla^2 \vec{H} + k^2 \vec{H} = 0, (k=\omega \sqrt{\mu \varepsilon})\\ &\nabla \cdot \vec{H} = 0\\ &\vec{E} = \frac{1}{i\omega \mu} \nabla \times \vec{H} \end{aligned}

上面的结果被称为Helmholtz方程

*均匀平面波

μ\muε\varepsilon为实数时(介质无损)
考虑如下形式的解:

E(x)=E0eikx(k=k)\vec{E}(\vec{x}) = \vec{E}_0 e^{i\vec{k}\cdot\vec{x}},(|\vec{k}| = k)

可验证其满足之前的Helmholtz方程

电磁波完整的复指数形式为

E(x,t)=E0ei(kxωt)\vec{E}(\vec{x},t) = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x} - \omega t)}

  • k\vec{k}为波矢,k^\hat{k}为相位传播方向,k为相位传播常数
  • k\vec{k}的方向为z轴,则相位可表示为ϕ=kzωt\phi = kz - \omega t
    等相位面为垂直于z轴(波矢方向)的平面
    等相位面上的振幅都相等。
    因此我们将上面所述的波成为均匀平面波
    相位传播速度:
    对于某个ϕ\phi的取值:

kdzωdt=0kdz-\omega dt = 0

dzdt=ωk=VP\frac{dz}{dt} = \frac{\omega}{k} = V_P

VP=ωkk^=1μεk^\vec{V}_P = \frac{\omega}{k} \hat{k} = \frac{1}{\sqrt{\mu \varepsilon}} \hat{k}

称为相速度

  • 相速度折射率:

nP=cVP=μrεrn_P = \frac{c}{V_P} = \sqrt{\mu_r \varepsilon_r}

在绝大多数情况下有μr=1\mu_r = 1,因此nPεrn_P \approx \sqrt{\varepsilon_r}

  • 波长:λ=2πk\lambda = \frac{2\pi}{k}
  • E=0\nabla \cdot \vec{E} = 0

(E0ei(kxωt))=0\nabla \cdot (\vec{E}_0 e^{i(\vec{k}\cdot\vec{x} - \omega t)}) = 0

ikE0ei(kxωt)=0i\vec{k}\cdot\vec{E}_0 e^{i(\vec{k}\cdot\vec{x} - \omega t)} = 0

kE0=0\vec{k}\cdot\vec{E}_0 = 0

E0\vec{E}_0k\vec{k}垂直

H=1iωμ×E=1iωμ×(E0ei(kx))=1iωμ×(E0ei(kx))=εμE0×k^ei(kxωt)=k^×E0ηei(kx)HEk^\begin{aligned} \vec{H} &= \frac{1}{i\omega \mu} \nabla \times \vec{E} = \frac{1}{i\omega \mu} \nabla \times (\vec{E}_0 e^{i(\vec{k}\cdot\vec{x} )})\\ &= \frac{1}{i\omega \mu} \nabla \times (\vec{E}_0 e^{i(\vec{k}\cdot\vec{x} )})\\ &= \sqrt{\frac{\varepsilon}{\mu}} \vec{E}_0 \times \hat{k} e^{i(\vec{k}\cdot\vec{x} - \omega t)}\\ &= \hat{k} \times \frac{\vec{E}_0}{\eta} e^{i(\vec{k}\cdot\vec{x})} \Rightarrow \vec{H} \perp \vec{E} \perp \hat{k} \end{aligned}

对于E,H\vec{E},\vec{H}只有与k\vec{k}垂直的分量,我们称之为横波
η\eta为波阻抗,η=με\eta = \sqrt{\frac{\mu}{\varepsilon}},在真空中有η0377Ω\eta_0 \approx 377 \Omega

  • 平均电场能量密度:

We=Re{ED4}=εE024\langle W_e \rangle = Re\left\{\frac{\vec{E} \cdot \vec{D}^*}{4}\right\} = \frac{\varepsilon|\vec{E}_0|^2}{4}

平均磁场能量密度:

Wm=Re{HB4}=μH024=E024η02=εE024\langle W_m \rangle = Re\left\{\frac{\vec{H} \cdot \vec{B}^*}{4}\right\} = \frac{\mu|\vec{H}_0|^2}{4} = \frac{|\vec{E}_0|^2}{4\eta_0^2} = \frac{\varepsilon|\vec{E}_0|^2}{4}

可以看到We=Wm\langle W_e \rangle = \langle W_m \rangle

总平均电磁能量密度

Wem=We+Wm=εE022\langle W_{em} \rangle = \langle W_e \rangle + \langle W_m \rangle = \frac{\varepsilon|\vec{E}_0|^2}{2}

  • 平均能流:

S=12Re{E×H}=E022ηk^\langle \vec{S} \rangle = \frac{1}{2} Re\left\{\vec{E} \times \vec{H}^* \right\} = \frac{|\vec{E}_0|^2}{2\eta} \hat{k}

能量传播速度:

Ve=SWem=1μεk^\vec{V}_e = \frac{\langle \vec{S} \rangle}{\langle W_{em} \rangle} = \frac{1}{\sqrt{\mu \varepsilon}} \hat{k}

  • 偏振(极化)
    对于E=E0ei(kxωt)\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x} - \omega t)}

E=E0ei(kxωt)=E0xeiϕxei(kxωt)e^x+E0yeiϕyei(kxωt)e^y\begin{aligned} \vec{E} &= \vec{E}_0 e^{i(\vec{k}\cdot\vec{x} - \omega t)}\\ &= E_{0x}e^{i\phi_x}e^{i(\vec{k}\cdot\vec{x} - \omega t)} \hat{e}_x + E_{0y}e^{i\phi_y}e^{i(\vec{k}\cdot\vec{x} - \omega t)} \hat{e}_y\\ \end{aligned}

瞬时值电场:
x方向:

Ex=E0xcos(kxωt+ϕx)E_x = E_{0x} \cos(\vec{k}\cdot\vec{x} - \omega t + \phi_x)

y方向:

Ey=E0ycos(kxωt+ϕy)E_y = E_{0y} \cos(\vec{k}\cdot\vec{x} - \omega t + \phi_y)

在某一z处,迎着波的传播方向看,电场矢量端点描绘的轨迹满足

(ExE0x)2+(EyE0y)22ExE0xEyE0ycos(ϕyϕx)=sin2(ϕyϕx)\left(\frac{E_x}{E_{0x}}\right)^2 + \left(\frac{E_y}{E_{0y}}\right)^2 - 2\frac{E_x}{E_{0x}}\frac{E_y}{E_{0y}}\cos(\phi_y - \phi_x) = \sin^2(\phi_y - \phi_x)

此公式在本课程中不要求
考虑Δϕ=ϕyϕx\Delta \phi = \phi_y - \phi_x

  • 线偏振:Δϕ=0π\Delta \phi = 0或\pi
  • 圆偏振:Δϕ=±π2\Delta \phi = \pm \frac{\pi}{2},其中Δϕ=π2\Delta \phi = \frac{\pi}{2}为右旋圆偏振(左旋圆极化),Δϕ=π2\Delta \phi = -\frac{\pi}{2}为左旋圆偏振(右旋圆极化)
  • 椭圆偏振:其他情况

以上结果均仅针对均匀平面波