*磁矢势

B=0B=×A\nabla \cdot \vec{B} = 0 \Rightarrow \vec{B} = \nabla \times \vec{A}

×B=μJ×(×A)=μJ(A)A=μ0J\begin{aligned} \nabla \times \vec{B} &= \mu \vec{J} \\ \nabla \times (\nabla \times \vec{A}) &= \mu \vec{J}\\ \nabla(\nabla \cdot \vec{A}) - \nabla \vec{A} &= \mu_0 \vec{J} \end{aligned}

附加约束:A=0\nabla \cdot \vec{A} = 0,Coulomb规范
全空间:

A=μ4πJ(x)rdV\vec{A} = \frac{\mu}{4\pi} \int \frac{\vec{J}(\vec{x}')}{r}dV'

2A=μJ\nabla^2 \vec{A} = -\mu \vec{J}

磁矢势边值关系:
B=×A,B=μH\vec{B} = \nabla \times \vec{A},\vec{B} = \mu \vec{H}

n^×(H1H2)=JSn^(B2B1)=0\begin{aligned} &\hat{n} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_S \\ &\hat{n} \cdot (\vec{B}_2 - \vec{B}_1) = 0 \end{aligned}

也就是

等待补充\begin{aligned} \text{等待补充} \end{aligned}

*磁场能量

能量密度:Wm=BH2=μ2H2W_m = \frac{\vec{B} \cdot \vec{H}}{2} = \frac{\mu}{2} H^2
总能量:W=μ2H2dV=12JAdVW = \int \frac{\mu}{2} H^2 dV = \frac{1}{2} \int \vec{J} \cdot \vec{A} dV

*磁标势

在自由电流为0的单连通区域

×H=Jf=0H=φm\nabla \times \vec{H} = \vec{J_f} = 0 \Rightarrow \vec{H} = -\nabla \varphi_m

这里的φm\varphi_m被称为磁标势

H=Bμ0M\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}

H=Bμ0M=ρmμ0\nabla \cdot \vec{H} = \frac{\nabla \cdot \vec{B}}{\mu_0} - \nabla \cdot \vec{M} = \frac{\rho_m}{\mu_0}

这里的ρm\rho_m是假想磁荷密度

2φm=ρmμ0\nabla^2 \varphi_m = -\frac{\rho_m}{\mu_0}

ρm=μM\rho_m = -\mu \nabla \cdot \vec{M}

静电场和静磁场的对比

静电场(ρf=0\rho_f = 0) 静磁场(Jf=0\vec{J_f} = 0)
E=0\nabla \cdot \vec{E} = 0 H=0\nabla \cdot \vec{H} = 0
E=ρpε0\nabla \cdot \vec{E} = \frac{\rho_p}{\varepsilon_0} H=ρmμ0\nabla \cdot \vec{H} = \frac{\rho_m}{\mu_0}
E=φ\vec{E} = -\nabla \varphi H=φm\vec{H} = -\nabla \varphi_m
2φ=ρpε0\nabla^2 \varphi = -\frac{\rho_p}{\varepsilon_0} 2φm=ρmμ0\nabla^2 \varphi_m = -\frac{\rho_m}{\mu_0}
ρP=P\rho_P = -\nabla \cdot \vec{P} ρm=(μ0M)\rho_m = -\nabla \cdot (\mu_0\vec{M})
ρSP=(P1P2)n^\rho_{SP} = (\vec{P}_1 - \vec{P}_2) \cdot \hat{n} ρSM=μ0(M1M2)n^\rho_{SM} = \mu_0(\vec{M}_1 - \vec{M}_2) \cdot \hat{n}
φ1=φ2\varphi_1 = \varphi_2φ2nφ1n=ρSPε0\frac{\partial\varphi_2}{\partial n} -\frac{\partial\varphi_1}{\partial n} = -\frac{\rho_{SP}}{\varepsilon_0} m1=m2\vec{m_1} = \vec{m_2}m2nm1n=ρSMμ0\frac{\partial \vec{m_2}}{\partial n} - \frac{\partial \vec{m_1}}{\partial n} = -\frac{\rho_{SM}}{\mu_0}

也就是说我们有如下的关系

HEφmφρmρpμ0ε0μ0MP\begin{aligned} \vec{H} &\leftrightarrow \vec{E} \\ \varphi_m &\leftrightarrow \varphi \\ \rho_m &\leftrightarrow \rho_p \\ \mu_0 &\leftrightarrow \varepsilon_0 \\ \mu_0 \vec{M} &\leftrightarrow \vec{P} \\ \end{aligned}

例题

考虑均匀带电薄球壳,半径为aa,面电荷密度为ρS\rho_S,绕轴匀速转动,角速度为ω\omega,求空间磁场
解:球坐标系下,球壳上面电流密度可以表示为

JS=ρSωasinθϕ^\vec{J_S} = \rho_S \omega a \sin \theta \hat{\phi}

考虑均匀磁化介质球,磁化面电流密度为

JSM=M×n^=Msinθϕ^\vec{J_{SM}} = \vec{M} \times \hat{n} = M\sin \theta \hat{\phi}

在两种情况之间建立等效,对比可知
等价的磁化强度为

M=ρSωaz^\vec{M} = \rho_S \omega a \hat{z}

利用对应关系:μ0M=P\mu_0\vec{M} = \leftrightarrow \vec{P}
球内有:

H=μ0M3μ0\vec{H} = -\frac{\mu_0 \vec{M}}{3\mu_0}

B=μ0H=\vec{B} = \mu_0 \vec{H} = \cdots

*电磁能流与Poynting实验

  • 电场能量:We=ED2W_e = \frac{\vec{E}\cdot \vec{D}}{2}
  • 磁场能量:Wm=BH2W_m = \frac{\vec{B}\cdot \vec{H}}{2}
  • 电荷动能:WvW_v
  • 总能量:W=We+Wm+WvW = W_e + W_m + W_v

能流矢量:S\vec{S}
根据能量守恒

SSdS=ddtVWdV\oint_S \vec{S} \cdot d\vec{S} = -\frac{d}{dt}\int_V W dV

根据Gauss定理

VSdV=VWtdV\int_V \nabla \cdot \vec{S} dV = \int_V \frac{\partial W}{\partial t} dV

由V的任意性可知

S=Wt\nabla \cdot \vec{S} = -\frac{\partial W}{\partial t}

S=t(We+Wm)+tWv=t(We+Wm)+Fv=t(We+Wm)+(ρE+ρv×B)v=t(ED2+BH2)+ρEv\begin{aligned} -\nabla \cdot \vec{S} &= \frac{\partial}{\partial t}(W_e + W_m) + \frac{\partial}{\partial t} W_v\\ &= \frac{\partial}{\partial t}(W_e + W_m) + \vec{F} \cdot \vec{v}\\ &= \frac{\partial}{\partial t}(W_e + W_m) + (\rho \vec{E} + \rho \vec{v} \times \vec{B}) \cdot \vec{v}\\ &= \frac{\partial}{\partial t}(\frac{\vec{E} \cdot \vec{D}}{2} + \frac{\vec{B} \cdot \vec{H}}{2}) + \rho \vec{E} \cdot \vec{v} \end{aligned}

分开计算

tED2=E2Dt+D2Et=εE2Et+ε2EEt=εEEt=EDt\begin{aligned} \frac{\partial}{\partial t} \frac{\vec{E} \cdot \vec{D}}{2} &= \frac{\vec{E}}{2} \cdot \frac{\partial \vec{D}}{\partial t} + \frac{\vec{D}}{2} \cdot \frac{\partial \vec{E}}{\partial t}\\ &= \varepsilon \frac{\vec{E}}{2} \cdot \frac{\partial \vec{E}}{\partial t} + \frac{\varepsilon}{2} \vec{E} \cdot \frac{\partial \vec{E}}{\partial t}\\ &= \varepsilon \vec{E} \cdot \frac{\partial \vec{E}}{\partial t} = \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \end{aligned}

S=EDt+BHt+EJ=E(×HJ)H(×E)+EJ=E(H×H)H(E×E)=H(E×H)E(E×H)=(E×H)\begin{aligned} -\nabla \cdot \vec{S} &= \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} + \vec{B} \cdot \frac{\partial \vec{H}}{\partial t} + \vec{E} \cdot \vec{J} \\ &= \vec{E} \cdot (\nabla \times \vec{H} - \vec{J}) - \vec{H}\cdot (\nabla \times \vec{E}) + \vec{E} \cdot \vec{J}\\ &= \vec{E} \cdot (\nabla_H \times \vec{H} )- \vec{H}\cdot (\nabla_E \times \vec{E}) \\ &= -\nabla_H \cdot (\vec{E} \times \vec{H}) - \nabla_E \cdot (\vec{E} \times \vec{H})\\ &= -\nabla \cdot (\vec{E} \times \vec{H}) \end{aligned}

定义S=E×H\vec{S} = \vec{E} \times \vec{H}为电磁能流密度,也叫做Poynting矢量

S=t(We+Wm)+EJ-\nabla \cdot \vec{S} = \frac{\partial}{\partial t}(W_e + W_m) + \vec{E} \cdot \vec{J}

被称为Poynting定理
积分形式:

SSdS=ddtV(We+Wm)dV+VEJdV-\oint_S \vec{S} \cdot d\vec{S} = \frac{d}{dt}\int_V (W_e + W_m) dV + \int_V \vec{E} \cdot \vec{J} dV

*频域的Maxwell方程组(原来还有这种东西)

Fourier变换:E(x,ω)=E(x,t)eiωtdt\vec{E}(\vec{x},\omega) = \int^{\infty}_{-\infty} \vec{E}(\vec{x},t) e^{i\omega t} dt
Fourier反变换:E(x,t)=12πE(x,ω)eiωtdω\vec{E}(\vec{x},t) = \frac{1}{2\pi} \int^{\infty}_{-\infty} \vec{E}(\vec{x},\omega) e^{-i\omega t} d\omega
(在这种Fourier变换下,时间导数变为iω-i\omega

变换后的Maxwell方程组:

×E=iωB×H=JiωDD=ρB=0\begin{aligned} &\nabla \times \vec{E} = i\omega \vec{B}\\ &\nabla \times \vec{H} = \vec{J} - i\omega \vec{D}\\ &\nabla \cdot \vec{D} = \rho\\ &\nabla \cdot \vec{B} = 0 \end{aligned}

本构关系

线性,各向同性,色散介质(无法单纯用ε\varepsilon描述介质性):

D(t)=tE(τ)ε(tτ)dτ=E(t)ε(t)\vec{D}(t) = \int^t_{-\infty} \vec{E}(\tau)\varepsilon(t-\tau) d \tau = \vec{E}(t) * \varepsilon(t)

D(ω)=ε(ω)E(ω)\vec{D}(\omega) = \varepsilon(\omega) \vec{E}(\omega)

同理可得

B(ω)=μ(ω)H(ω)\vec{B}(\omega) = \mu(\omega) \vec{H}(\omega)

边值关系

n^×(E2E1)=0n^×(H2H1)=JSn^(D2D1)=ρSn^(B2B1)=0\begin{aligned} &\hat{n} \times (\vec{E}_2 - \vec{E}_1) = 0 \\ &\hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{J}_S \\ &\hat{n} \cdot (\vec{D}_2 - \vec{D}_1) = \rho_S \\ &\hat{n} \cdot (\vec{B}_2 - \vec{B}_1) = 0 \end{aligned}

形式一模一样,内部变量变换到频域上

*时谐场

具有某一固定振荡频率的场

E(x,t)=[E1(x)cos[ωt+ϕ1(x)]E2(x)cos[ωt+ϕ2(x)]E3(x)cos[ωt+ϕ3(x)]]=12{[E1(x)eϕ1(x)E2(x)eϕ2(x)E3(x)eϕ3(x)]eiωt+CC}=Re{E(x)eiωt}\vec{E}(\vec{x},t) = \left[\begin{matrix} E_1(\vec{x})\cos [\omega t + \phi_1(\vec{x})] \\ E_2(\vec{x})\cos [\omega t + \phi_2(\vec{x})] \\ E_3(\vec{x})\cos [\omega t + \phi_3(\vec{x})] \\ \end{matrix}\right] = \frac{1}{2} \left\{\left[\begin{matrix} E_1(\vec{x}) e^{-\phi_1(\vec{x})} \\ E_2(\vec{x}) e^{-\phi_2(\vec{x})} \\ E_3(\vec{x}) e^{-\phi_3(\vec{x})} \\ \end{matrix}\right] e^{-i\omega t} + CC \right\} = Re\left\{\vec{E}(\vec{x}) e^{-i\omega t}\right\}

其中

E(x)=[E1(x)eϕ1(x)E2(x)eϕ2(x)E3(x)eϕ3(x)]\vec{E}(\vec{x}) = \left[\begin{matrix} E_1(\vec{x}) e^{-\phi_1(\vec{x})} \\ E_2(\vec{x}) e^{-\phi_2(\vec{x})} \\ E_3(\vec{x}) e^{-\phi_3(\vec{x})} \\ \end{matrix}\right]

为复振幅
时谐场复指数表示形式:E(x,t)=E(x)eiωt\vec{E}(\vec{x},t) = \vec{E}(\vec{x}) e^{-i\omega t}
瞬时值形式:Re{E(x,t)}Re\left\{\vec{E}(\vec{x,t}) \right\}

*复数的Poynting定理

对于时谐场:

S=E×H=12[E(x)eiωt+E(x)eiωt]×12[H(x)eiωt+H(x)eiωt]=14[E×Hei2ωt+E×H+E×H+E×Hei2ωt]\begin{aligned} \vec{S} = \vec{E} \times \vec{H} &= \frac{1}{2} \left[\vec{E}(\vec{x}) e^{-i\omega t} + \vec{E}^*(\vec{x}) e^{i\omega t}\right] \times \frac{1}{2} \left[\vec{H}(\vec{x}) e^{-i\omega t} + \vec{H}^*(\vec{x}) e^{i\omega t}\right]\\ &= \frac{1}{4} \left[\vec{E}\times \vec{H} e^{-i2\omega t} + \vec{E}\times \vec{H}^* +\vec{E}^* \times \vec{H} + \vec{E}^* \times \vec{H}^* e^{i2\omega t}\right]\\ \end{aligned}

在一个周期[0,T](T=2πω)[0,T](T = \frac{2\pi}{\omega})内求平均

S=12Re{E×H}\begin{aligned} \langle \vec{S} \rangle &= \frac{1}{2} Re\left\{\vec{E} \times \vec{H}^*\right\}\\ \end{aligned}

定义复数Poynting矢量

S~=12E×H\widetilde{\vec{S}} = \frac{1}{2} \vec{E} \times \vec{H}^*

那么

S=Re{S~}\langle \vec{S} \rangle = Re\left\{\widetilde{\vec{S}}\right\}