向量运算

二重向量积

a×(b×c)=b(ac)c(ab)\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})

(a×b)×c=b(ac)a(bc)(\vec{a} \times \vec{b}) \times \vec{c} = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{a}(\vec{b} \cdot \vec{c})

Green恒等式

第一恒等式:

V(φ2ψφψ)dV=SϕψdS\int_V (\varphi \nabla^2 \psi - \nabla \varphi \nabla \psi) dV = \int_S \phi \nabla \psi dS

第二恒等式:

V(φ2ψψ2φ)dV=S(φψψφ)dS\int_V (\varphi \nabla^2 \psi - \psi \nabla^2 \varphi) dV = \int_S (\varphi \nabla \psi - \psi \nabla \varphi) dS

电流连续性方程

j+ρt=0\nabla \cdot \vec{j} + \frac{\partial \rho}{\partial t} = 0

课上复习

*介质中Maxwell方程组

×E=Bt×H=j+DtD=ρB=0\begin{aligned} &\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ &\nabla \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t} \\ &\nabla \cdot \vec{D} = \rho \\ &\nabla \cdot \vec{B} = 0 \end{aligned}

简单介质本构关系:

D=εEB=μH\begin{aligned} &\vec{D} = \varepsilon \vec{E} \\ &\vec{B} = \mu \vec{H} \end{aligned}

*边值关系

n^×(E2E1)=0n^×(H2H1)=KSn^(D2D1)=ρSn^(B2B1)=0\begin{aligned} &\hat{n} \times (\vec{E}_2 - \vec{E}_1) = 0 \\ &\hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{K}_S \\ &\hat{n} \cdot (\vec{D}_2 - \vec{D}_1) = \rho_S \\ &\hat{n} \cdot (\vec{B}_2 - \vec{B}_1) = 0 \end{aligned}

*电荷和电流

点电荷:

ρ(x)=qδ(xx)rr3=4πδ(r)21r=4πδ(r)\begin{aligned} &\rho(\vec{x}) = q \delta(\vec{x} - \vec{x}') \\ &\nabla \cdot \frac{\vec{r}}{r^3} = 4\pi \delta(\vec{r})\\ &\nabla^2 \frac{1}{r} = -4\pi \delta(\vec{r}) \end{aligned}

电流密度:j=ρv\vec{j} = \rho \vec{v}
电流连续性方程:j+ρt=0\nabla \cdot \vec{j} + \frac{\partial \rho}{\partial t} = 0
极化体电荷:ρp=P\rho_p = -\nabla \cdot \vec{P}
极化面电荷:ρSP=(P1P2)n^\rho_{SP} = (\vec{P}_1 - \vec{P}_2) \cdot \hat{n}
磁化体电荷:Jm=×M\vec{J}_m = \nabla \times \vec{M}
磁化面电流:JSM=(M1M2)×n^\vec{J}_{SM} = (\vec{M}_1 - \vec{M}_2) \times \hat{n}

*电磁场力

点电荷:F=qE+qv×B\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}
体元:dF=ρEdv+J×Bdvd\vec{F} = \rho\vec{E}dv + \vec{J} \times \vec{B} dv

*静电场

物理量之间的关系

TODO:插图

静电势多级展开

φ(x)=14πε0ρ(x)rdV=φ(0)+φ(1)+φ(2)+\varphi(\vec{x}) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(\vec{x'})}{r}dV' = \varphi^{(0)} + \varphi^{(1)} + \varphi^{(2)} + \cdots

第二个等号在x>>x|\vec{x}| >> |\vec{x}'|时成立
零阶项:点电荷

φ(0)=14πε0QR,Q=ρ(x)dV\varphi^{(0)} = \frac{1}{4\pi \varepsilon_0} \frac{Q}{R}, Q = \int \rho(\vec{x'}) dV'

一阶项:电偶极子

φ(1)=14πε0prr3,p=ρ(x)xdV\varphi^{(1)} = \frac{1}{4\pi \varepsilon_0} \frac{\vec{p} \cdot \vec{r}}{r^3}, \vec{p} = \int \rho(\vec{x'}) \vec{x'} dV'

二阶项:电四极子

φ(2)=14πε016i,jDij2xixj1R\varphi^{(2)} = \frac{1}{4\pi \varepsilon_0} \frac{1}{6} \sum_{i,j} D_{ij}\frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R}

其中Dij=ρ(x)(3xixjR2δij)dVD_{ij} = \int \rho(\vec{x'}) (3x'_i x'_j - R'^2 \delta_{ij}) dV'

静电势边值关系

φ1=φ2ε2φ2n+ε1φ1n=ρS\begin{aligned} &\varphi_1 = \varphi_2 \\ &-\varepsilon_2 \frac{\partial \varphi_2}{\partial n} + \varepsilon_1 \frac{\partial \varphi_1}{\partial n} = \rho_S \end{aligned}

唯一性定理

2φ=ρε0\nabla^2 \varphi = -\frac{\rho}{\varepsilon_0},然后边界条件φS\varphi|_S或者φnS\frac{\partial\varphi}{\partial n}|_S中至少有一个给定
导体表面:

φS=constφndS=Qε\begin{aligned} \varphi|_S = \text{const} \\ \oint \frac{\partial \varphi}{\partial n} dS = -\frac{Q}{\varepsilon} \end{aligned}

镜像法

懒得写了

分离变量法(直角+球)(必考)

Green函数法

静电场能量(必考)

密度:We=12ED2=ε2E2W_e = \frac{1}{2} \frac{\vec{E} \cdot \vec{D}}{2} = \frac{\varepsilon}{2} E^2