介质中的Maxwell方程组

×E=Bt×B=μ0(Jf+Jμ+Jp)+μ0ε0EtE=ρf+ρpε0B=0\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\\ \nabla \times \vec{B} = \mu_0(\vec{J}_f + \vec{J}_\mu + \vec{J}_p) + \mu_0\varepsilon_0\frac{\partial \vec{E}}{\partial t}\\ \nabla \cdot \vec{E} = \frac{\rho_f + \rho_p}{\varepsilon_0}\\ \nabla \cdot \vec{B} = 0\\

新定义

电位移矢量

D=ε0E+P\vec{D} = \varepsilon_0\vec{E} + \vec{P}

磁场强度

H=1μ0BM\vec{H} = \frac{1}{\mu_0}\vec{B} - \vec{M}

maxwell方程组的简洁形式

×E=Bt×H=Jf+DtD=ρfB=0\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\\ \nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}\\ \nabla \cdot \vec{D} = \rho_f\\ \nabla \cdot \vec{B} = 0\\

简单介质本构关系

D=ε0P=εE+ε0XeE=ε0(1+Xe)E=ε0εrE=εE\vec{D} = \varepsilon_0\vec{P} = \varepsilon\vec{E}+\varepsilon_0\mathcal{X}_e\vec{E} = \varepsilon_0(1+\mathcal{X}_e)\vec{E} = \varepsilon_0\varepsilon_r\vec{E} = \varepsilon\vec{E}\\

这里的εr\varepsilon_r是相对介电常数,ε=ε0εr\varepsilon = \varepsilon_0\varepsilon_r是介电常数

H=1μ0BM=1μ0BXmHB=μ0H+μ0XmH=μ0(1+Xm)H=μ0μrH=μH\vec{H} = \frac{1}{\mu_0}\vec{B} - \vec{M} = \frac{1}{\mu_0}\vec{B} - \mathcal{X}_m\vec{H}\\ \vec{B} = \mu_0\vec{H} + \mu_0\mathcal{X}_m\vec{H} = \mu_0(1+\mathcal{X}_m)\vec{H} = \mu_0\mu_r\vec{H} = \mu\vec{H}

这里的μr\mu_r是相对磁导率,μ=μ0μr\mu = \mu_0\mu_r是磁导率

边值关系

n^×(E2E1)=0n^×(H2H1)=JSn^(D2D1)=ρsn^(B2B1)=0\begin{aligned} \hat{n} \times (\vec{E}_2 - \vec{E}_1) &= 0\\ \hat{n} \times (\vec{H}_2 - \vec{H}_1) &= \vec{J_S}\\ \hat{n} \cdot (\vec{D}_2 - \vec{D}_1) &= \rho_s\\ \hat{n} \cdot (\vec{B}_2 - \vec{B}_1) &= 0\\ \end{aligned}

静电场中的导体

在电场中,导体达到经典平衡态后:

  • 电场:
    内部电场为0,E=0\vec{E}_内 = 0
    外部电场垂直于表面,n^E=0\hat{n} \cdot \vec{E}_外 = 0
  • 电荷:
    内部无净电荷:ρ=0\rho_{内} = 0
    电荷集中在表面:ρs=ε0n^E\rho_s = \varepsilon_0\hat{n} \cdot \vec{E}_外
  • 电势:
    内部为等势体,表面为等势面

    φS=const\varphi |_S = const

    ρ,E,φ\rho,\vec{E},\varphi关系:

    ε0ES=ρS=ε0φnS\varepsilon_0 E |_S = \rho_S = -\varepsilon_0 \frac{\partial \varphi}{\partial n} |_S

  • 表面单位面积受到的电场力

F=ρSES/2=ρS22ε0n^\vec{F} = \rho_S \vec{E} |_S / 2 = \frac{\rho_S^2}{2\varepsilon_0} \hat{n}

点电荷的势能

w2=q1q24πε0rw3=q3q14πε0r+q3q24πε0rwi=14πε0j=1i1qiqjrijw_2 = \frac{q_1q_2}{4\pi\varepsilon_0r}\\ w_3 = \frac{q_3q_1}{4\pi\varepsilon_0r} + \frac{q_3q_2}{4\pi\varepsilon_0r}\\ w_i = \frac{1}{4\pi \varepsilon_0} \sum_{j=1}^{i-1} \frac{q_iq_j}{r_{ij}}

假设一共有N个点电荷,那么总功为:

W=wi=14πε0i=2Nj=1i1qiqjrij=12i=1Nqiφi\begin{aligned} W = \sum w_i &= \frac{1}{4\pi\varepsilon_0} \sum_{i=2}^{N} \sum_{j=1}^{i-1} \frac{q_iq_j}{r_{ij}}\\ &= \frac{1}{2} \sum_{i=1}^{N} q_i \varphi_i \end{aligned}

这里φi\varphi_i是除去第i个电荷外,其余所有电荷在xi\vec{x}_i处所产生的电势

推广到连续分布电势:

W=12ρ(r)φ(r)dVW = \frac{1}{2} \int \rho(\vec{r})\varphi(\vec{r})dV

导体系的能量:

W=12i=1NQiφiW = \frac{1}{2} \sum^N_{i=1} Q_i \varphi_i

电场的能量

W=12ρφdV=ε02φ2φdV\begin{aligned} W &= \frac{1}{2} \int \rho \varphi dV\\ &= -\frac{\varepsilon_0}{2} \int \varphi \nabla^2 \varphi dV \end{aligned}

有Green恒等式

Vφ2ψdV=SφψndSVφψdV\int_V \varphi \nabla^2 \psi dV = \int_S \varphi \frac{\partial \psi}{\partial n} dS - \int_V \nabla \varphi \cdot \nabla \psi dV

ψ=φ\psi = \varphi

Vφ2φdV=SφφndSVφ2dV\int_V \varphi \nabla^2 \varphi dV = \int_S \varphi \frac{\partial \varphi}{\partial n} dS - \int_V |\nabla \varphi|^2 dV

rr \rightarrow \infty时,φ1r\varphi \propto \frac{1}{r}φn1r2\frac{\partial \varphi}{\partial n} \propto \frac{1}{r^2}Sr2S \propto r^2SφφndS0\oint_S \varphi \frac{\partial \varphi}{\partial n} dS \rightarrow 0

W=ε02φ2dV=12ε0E2dVW = \frac{\varepsilon_0}{2} \int |\nabla \varphi|^2 dV = \int \frac{1}{2} \varepsilon_0 E^2 dV

定义电场的能量密度

We=12ε0E2W_e = \frac{1}{2} \varepsilon_0 E^2

在介质中

We=12εE2=12DE=12(ε0E2+PE)W_e = \frac{1}{2} \varepsilon E^2 = \frac{1}{2} \vec{D} \cdot \vec{E} = \frac{1}{2} (\varepsilon_0E^2 + \vec{P} \cdot \vec{E})

其中12PE\frac{1}{2}\vec{P} \cdot \vec{E}是介质的极化储能

静电系统的总能量

W=12ρfφdV=12εE2dVW=12ε0E1+E22dV=12ε0E12dV+12ε0E22dV+ε0E1E2dV\begin{aligned} W &= \frac{1}{2} \int \rho_f \varphi dV = \frac{1}{2} \int \varepsilon E^2 dV\\ W &= \frac{1}{2} \varepsilon_0 \int |\vec{E_1}+\vec{E_2}|^2 dV\\ &= \frac{1}{2} \varepsilon_0 \int |\vec{E_1}|^2 dV + \frac{1}{2} \varepsilon_0 \int |\vec{E_2}|^2 dV + \varepsilon_0 \int \vec{E_1} \cdot \vec{E_2} dV \end{aligned}

于是可以将总能量分为自能和相互作用能

静电势多级展开

已知全空间中区域分布的电荷ρ\rho,求空间电势

φ(x)=14πε0ρ(x)rdV\varphi(\vec{x}) = \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(\vec{x'})}{|\vec{r}|}dV'

在远离电荷分布区域的位置,即xx|\vec{x}| \gg |\vec{x'}|

1xx=1xxx+12(x)21x+\frac{1}{|\vec{x}-\vec{x'}|} = \frac{1}{|\vec{x}|} - \nabla \cdot \frac{\vec{x'}}{|\vec{x}|} + \frac{1}{2} (\vec{x}' \cdot \nabla)^2 \frac{1}{|\vec{x}|} + \cdots

x=R|\vec{x}| = R

零阶项

φ(0)=14πε0ρ(x)RdV=14πε0Rρ(x)dV=14πε0QR\begin{aligned} \varphi^{(0)}&= \frac{1}{4\pi \varepsilon_0} \int \frac{\rho(\vec{x'})}{R}dV'\\ &=\frac{1}{4\pi \varepsilon_0R} \int \rho(\vec{x'})dV'\\ &= \frac{1}{4\pi\varepsilon_0} \frac{Q}{R} \end{aligned}

一阶项

φ(1)=14πε0ρ(x)x1RdV=14πε0ρ(x)xRR3dV=14πε0[ρ(x)xdV]RR3=14πε0pRR3\begin{aligned} \varphi^{(1)} &= -\frac{1}{4\pi \varepsilon_0} \int \rho(\vec{x'}) \vec{x'} \cdot \nabla \frac{1}{R} dV'\\ &= \frac{1}{4\pi \varepsilon_0} \int \rho(\vec{x'}) \frac{\vec{x'} \cdot \vec{R}}{R^3} dV'\\ &= \frac{1}{4\pi \varepsilon_0} [\int \rho(\vec{x'}) \vec{x'} dV'] \cdot \frac{\vec{R}}{R^3}\\ &= \frac{1}{4\pi \varepsilon_0} \frac{\vec{p}\cdot \vec{R}}{R^3} \end{aligned}

其中p=ρ(x)xdV\vec{p} = \int \rho(\vec{x'}) \vec{x'} dV'是系统电偶极矩

p=qx+qx+=qr\vec{p} = -q \vec{x}_- + q \vec{x}_+ = q \vec{r}

当系统总电荷量为0的时候(Q=0),p\vec{p}与坐标原点的位置选取无关

p1=ρ(x)xdV=ρ(x)(xo1)dVp2=ρ(x)xdV=ρ(x)(xo2)dVp1p2=ρ(x)(o2o1)dV=(o2o1)Q=0\vec{p_1} = \int \rho(\vec{x'}) \vec{x'} dV' = \int \rho(\vec{x'}) (\vec{x'}-\vec{o}_1) dV'\\ \vec{p_2} = \int \rho(\vec{x'}) \vec{x'} dV' = \int \rho(\vec{x'}) (\vec{x'}-\vec{o}_2) dV'\\ \vec{p}_1 - \vec{p}_2 = \int \rho(\vec{x'}) (\vec{o}_2 - \vec{o}_1) dV' = (\vec{o}_2 - \vec{o}_1)Q = 0

二阶项

φ(2)=14πε012ρ(x)(x)21RdV=14πε012ρ(x)xixj2xixj1RdV=14πε016i,j[3ρ(x)xixjdV]2xixj1R=14πε016i,jDij2xixj1R\begin{aligned} \varphi^{(2)} &= \frac{1}{4\pi \varepsilon_0} \frac{1}{2}\int \rho(\vec{x'}) (\vec{x'} \cdot \nabla)^2 \frac{1}{R} dV'\\ &= \frac{1}{4\pi \varepsilon_0} \frac{1}{2}\int \rho(\vec{x'}) x'_i x'_j \frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R} dV'\\ &= \frac{1}{4\pi \varepsilon_0} \frac{1}{6}\sum_{i,j}[\int 3\rho(\vec{x'}) x'_i x'_j dV']\frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R}\\ &= \frac{1}{4\pi \varepsilon_0} \frac{1}{6} \sum_{i,j} D_{ij}\frac{\partial^2}{\partial x_i \partial x_j} \frac{1}{R} \end{aligned}

其中Dij=3ρ(x)xixjdVD_{ij} = \int 3\rho(\vec{x'}) x'_i x'_j dV'是系统的电四极矩

电四极子

Dij=DjiD_{ij}= D_{ji},其中i代表的是正负电荷分开方向,j代表的是电偶极子分开方向

例:
计算D33D_{33}的电势

D33=3ρ(x)x3x3dV=3qb23qa23qa2+3qb2=6qb26qa2=6q(b2a2)=6q(ba)(b+a)=6pl\begin{aligned} D_{33} &= \int 3\rho(\vec{x'}) x'_3 x'_3 dV'\\ &= 3 q b^2 - 3 q a^2 - 3 q a^2 + 3 q b^2\\ &= 6 q b^2 - 6 q a^2\\ &= 6 q (b^2 - a^2)\\ &= 6 q (b-a) (b+a)\\ &= 6 pl \end{aligned}

其中l=(b+a)l = (b+a)是两个电偶极子之间的距离,p=q(ba)p = q(b-a)是电偶极子的电偶极矩
电势:

φ(x)=14πε0pr+r+314πε0prr3=14πε0p1r++14πε0p1r=14πε0p(1r++1r)=14πε0pz(1r1r)=14πε0pzr+rr+r=14πε0pzlcosθR2=pl4πε0zRcosθR3=pl4πε0zzR2=6pl4πε022z1R\begin{aligned} \varphi(\vec{x}) &= \frac{1}{4\pi \varepsilon_0} \frac{\vec{p} \cdot \vec{r}_+}{r_+^3} - \frac{1}{4\pi \varepsilon_0} \frac{\vec{p} \cdot \vec{r}_-}{r_-^3}\\ &= \frac{1}{4\pi \varepsilon_0} \vec{p}\cdot \nabla \frac{1}{r_+} + \frac{1}{4\pi \varepsilon_0} \vec{p}\cdot \nabla \frac{1}{r_-}\\ &= \frac{1}{4\pi \varepsilon_0} \vec{p} \cdot (\nabla \frac{1}{r_+} + \nabla \frac{1}{r_-})\\ &= \frac{1}{4\pi \varepsilon_0} \vec{p} \cdot \frac{\partial}{\partial z}(\frac{1}{r_-} - \frac{1}{r_-})\\ &= \frac{1}{4\pi \varepsilon_0} \vec{p} \frac{\partial}{\partial z} \frac{r_+ - r_-}{r_+ r_-}\\ &= -\frac{1}{4\pi \varepsilon_0} \vec{p} \frac{\partial}{\partial z} \frac{lcos\theta}{R^2}\\ &= -\frac{pl}{4\pi \varepsilon_0} \frac{\partial}{\partial z} \frac{Rcos\theta}{R^3}\\ &= -\frac{pl}{4\pi \varepsilon_0} \frac{\partial}{\partial z} \frac{z}{R^2}\\ &= \frac{6pl}{4\pi \varepsilon_0} \frac{\partial^2}{\partial^2 z} \frac{1}{R} \end{aligned}