电荷

  • 分为+,-两种属性
  • 量子化,元电荷e1.6×1019Ce \approx 1.6\times 10^{-19}C
  • 电荷量守恒

电荷的形态

点电荷:电荷大小qq
线电荷:电荷线密度ρl=limΔl0ΔqΔl\rho_l = \lim_{\Delta l \to 0}\frac{\Delta q}{\Delta l}
面电荷:电荷面密度ρs=limΔS0ΔqΔS\rho_s = \lim_{\Delta S \to 0}\frac{\Delta q}{\Delta S}
体电荷:电荷体密度ρv=limΔV0ΔqΔV\rho_v = \lim_{\Delta V \to 0}\frac{\Delta q}{\Delta V}

ΔV\Delta V:“宏观小,微观大”

  • 相对于问题求解区是宏观小
  • 相对于微观带电粒子很大

点电荷的密度

ρ(r)=qδ(rr0)={r=r00rr0\rho(\vec{r}) = q\delta(\vec{r}-\vec{r}_0) = \left\{ \begin{array}{lr} \infin & \vec{r} = \vec{r}_0 \\ 0 & \vec{r} \neq \vec{r}_0 \end{array} \right.

考虑均匀的带电小球

ρ(r)={q4/3πR3rV0rV\rho(\vec{r}) = \left\{ \begin{array}{lr} \frac{q}{4/3 \cdot \pi R^3} & \vec{r} \in V \\ 0 & \vec{r} \notin V \end{array} \right.

那么点电荷密度就等于

ρ(r)=limR0ρR(x)=qδ(xx0)\rho(\vec{r}) = \lim_{R \rightarrow 0} \rho_R(\vec{x}) = q\delta(\vec{x}-\vec{x}_0)

δ\delta函数具有下面的性质

Vδ(xx0)dx={1x0V0x0VVf(x)δ(xx0)dx=f(x0)    x0V\int_V\delta(\vec{x} - \vec{x_0})dx = \left\{ \begin{array}{lr} 1 & \vec{x_0} \in V \\ 0 & \vec{x_0} \notin V \end{array} \right.\\ \int_Vf(\vec{x})\delta(\vec{x} - \vec{x_0})dx = f(\vec{x_0}) \space \space \space \space \vec{x_0} \in V

电流

线电流:

I=limΔt0ΔQΔt|\vec{I}| = \lim_{\Delta t \to 0}\frac{\Delta Q}{\Delta t}

(经过某一点的电流)
面电流:

JS=limΔl01ΔLlimΔt0ΔQΔt|\vec{J_S}| = \lim_{\Delta l \to 0}\frac{1}{\Delta L}\lim_{\Delta t \to 0}\frac{\Delta Q}{\Delta t}

(面的电流密度)
体电流:

JV=limΔS01ΔSlimΔt0ΔQΔt|\vec{J_V}| = \lim_{\Delta S \to 0}\frac{1}{\Delta S}\lim_{\Delta t \to 0}\frac{\Delta Q}{\Delta t}

电荷与电流的关系

  • J=ρv\vec{J} = \rho \vec{v}v\vec{v}是电荷的运动速度)
  • J+ρt=0\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0(电荷守恒)(电流连续性方程)

静电场Coulomb定律

静电力:

F=14πϵ0q1q2r3r\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r^3}\vec{r}

Q在x\vec{x}处产生的电场:

E(x)=14πϵ0qr3r\vec{E}(\vec{x}) = \frac{1}{4\pi\epsilon_0}\frac{q}{r^3}\vec{r}

叠加原理:

E=iEi\vec{E} = \sum_i \vec{E}_i

推广到连续分布电荷:

E(r)=14πϵ0Vρ(r)rr3(rr)dV\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0}\int_V \frac{\rho(\vec{r'})}{|\vec{r}-\vec{r'}|^3}(\vec{r}-\vec{r'})dV'

Biot-Savart定律

稳恒电流场:

Jt=0,J=0\frac{\partial \vec{J}}{\partial t} = 0, \nabla \cdot \vec{J} = 0

磁感应强度:

B(r)=μ04πJ(r)×(rr)rr3dV\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi}\int \frac{\vec{J}(\vec{r'})\times(\vec{r}-\vec{r'})}{|\vec{r}-\vec{r'}|^3}dV'

磁场力:

  • 运动电荷:

F=qv×B\vec{F} = q\vec{v}\times\vec{B}

线电流源:

dF=I×Bdld\vec{F} = \vec{I}\times\vec{B} dl

体电流源:

dF=J×BdVd\vec{F} = \vec{J}\times\vec{B}dV

Lorentz力:电场力+磁场力

点电荷

F=qE+qv×B\vec{F} = q\vec{E} + q\vec{v}\times\vec{B}

体元:

dF=ρEdV+J×BdVd\vec{F} = \rho\vec{E}dV + \vec{J}\times\vec{B}dV

Maxwell方程组

静电场的散度

E=14πϵ0Vρ(r)r3rdV=14πϵ0Vρ(r)r3rdV=14πϵ0Vρ(r)rr3dV\begin{aligned} \nabla \cdot \vec{E} &= \frac{1}{4\pi \epsilon_0}\nabla \cdot \int_V \frac{\rho(\vec{r'})}{|\vec{r}|^3}\vec{r}dV' \\ &= \frac{1}{4\pi \epsilon_0}\int_V \nabla \cdot \frac{\rho(\vec{r'})}{|\vec{r}|^3}\vec{r}dV' \\ &= \frac{1}{4\pi \epsilon_0}\int_V \rho(\vec{r'})\nabla \cdot \frac{\vec{r}}{|\vec{r}|^3}dV' \\ \end{aligned}

根据 Gauss 定理

VdV=SEdS=14πϵ0S[Vρ(r)rr3dV]dS\begin{aligned} \int_V \nabla \cdot d\vec{V} &= \oint_S \vec{E} \cdot d\vec{S} \\ &= \frac{1}{4\pi \epsilon_0}\int_S [\int_V \rho(\vec{r'}) \frac{\vec{r}}{|\vec{r}|^3}dV']d\vec{S} \\ \end{aligned}

考虑一个点电荷的情况

E=14πϵ0qr3r\vec{E} = \frac{1}{4\pi \epsilon_0}\frac{q}{r^3}\vec{r}

SEdS=q4πϵ0Srr3dS=q4πϵ0Sr^r2dS=q4πϵ0sdΩ=q4πϵ04π=qϵ0\begin{aligned} \oint_S \vec{E} \cdot d\vec{S} &= \frac{q}{4\pi\epsilon_0}\oint_S \frac{\vec{r}}{r^3} \cdot d\vec{S} \\ &= \frac{q}{4\pi\epsilon_0}\oint_S \frac{\hat{r}}{r^2} dS \\ &= \frac{q}{4\pi\epsilon_0}\oint_s d\Omega \\ &= \frac{q}{4\pi\epsilon_0}4\pi \\ &= \frac{q}{\epsilon_0} \end{aligned}

q位于S外的时候

SEdS=0\oint_S \vec{E} \cdot d\vec{S} = 0

多个电荷的情况

SEdS=iqiϵ0\oint_S \vec{E} \cdot d\vec{S} = \sum_i \frac{q_i}{\epsilon_0}

这里要求qiq_i在积分面内

对于连续分布电荷

SEdS=1ϵ0Vρ(r)dVVEdV=1ϵ0Vρ(r)dVE=ρϵ0\oint_S \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0}\int_V \rho(\vec{r'})dV'\\ \int_V \nabla \cdot \vec{E}dV = \frac{1}{\epsilon_0}\int_V \rho(\vec{r'})dV'\\ \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}

对于点电荷:

E=14πϵ0qr3r,ρ(x)=qδ(xx)q4πϵ0rr3=qδ(xx)rr3=4πδ(r)\vec{E} = \frac{1}{4\pi\epsilon_0}\frac{q}{r^3}\vec{r}, \rho(\vec{x}) = q\delta(\vec{x} - \vec{x'})\\ \frac{q}{4\pi \epsilon_0}\nabla \cdot \frac{\vec{r}}{r^3} = q\delta(\vec{x} - \vec{x'})\\ \nabla \cdot \frac{\vec{r}}{r^3} = 4\pi \delta(\vec{r} )\\

E=14πϵ0Vρ(r)r3rdV=14πϵ0Vρ(r)r3rdV=4π4πϵ0Vρ(r)δ(xx)dV=ρ(x)ϵ0\begin{aligned} \nabla \cdot \vec{E} &= \frac{1}{4\pi \epsilon_0}\nabla \cdot \int_V \frac{\rho(\vec{r'})}{|\vec{r}|^3}\vec{r}dV' \\ &= \frac{1}{4\pi \epsilon_0}\int_V \nabla \cdot \frac{\rho(\vec{r'})}{|\vec{r}|^3}\vec{r}dV' \\ &= \frac{4 \pi}{4\pi \epsilon_0}\int_V \rho(\vec{r'})\delta(\vec{x}-\vec{x'}) dV' \\ &= \frac{\rho(\vec{x})}{\epsilon_0} \end{aligned}

静电场的旋度

考虑点电荷

E=14πϵ0qr3r\vec{E} = \frac{1}{4\pi\epsilon_0}\frac{q}{r^3}\vec{r}

lEdl=q4πϵ0lrr3dl=q4πϵ0lr^r2dl=q4πϵ0ldrr2=0\begin{aligned} \oint_l \vec{E} \cdot d\vec{l} &= \frac{q}{4\pi\epsilon_0}\oint_l \frac{\vec{r}}{r^3} \cdot d\vec{l} \\ &= \frac{q}{4\pi\epsilon_0}\oint_l \frac{\hat{r}}{r^2} dl \\ &= \frac{q}{4\pi\epsilon_0}\oint_l \frac{dr}{r^2} \\ &= 0 \end{aligned}

由Stokes定理

lEdl=S(×E)dS×E=0\oint_l \vec{E} \cdot d\vec{l} = \int_S (\nabla \times \vec{E}) \cdot d\vec{S}\\ \nabla \times \vec{E} = 0

静电场是无旋场,所以存在电势(静电场是势场的梯度场)

×E=0E=φ\nabla \times \vec{E} = 0 \Rightarrow \vec{E} = -\nabla \varphi

静电势 φ\varphi

定义:把单位电荷从规定的零电势点移到某一点克服电场力所做的功

φ(x)=x0xEdl\varphi(\vec{x}) = -\int_{\vec{x_0}}^{\vec{x}} \vec{E} \cdot d\vec{l}

计算φ\varphi沿着l^\hat{l}方向的导数

limΔl0=E^l^=φl^\lim_{\Delta_l \to 0} = - \hat{E} \cdot \hat{l} = \nabla \varphi \cdot \hat{l}

E=φE=2φ=ρϵ0\vec{E} = -\nabla \varphi\\ \nabla \cdot \vec{E} = -\nabla^2 \varphi = \frac{\rho}{\epsilon_0}

2φ=ρϵ0\nabla^2 \varphi = -\frac{\rho}{\epsilon_0}

此为Poisson方程
点电荷电势

φ=14πϵ0qr\varphi = \frac{1}{4\pi\epsilon_0}\frac{q}{r}

连续分布电荷电势

φ(r)=14πϵ0Vρ(r)rrdV\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0}\int_V \frac{\rho(\vec{r'})}{|\vec{r}-\vec{r'}|}dV'

1r=rr321r=0\nabla \frac{1}{r} = -\frac{\vec{r}}{r^3}\\ \nabla^2 \frac{1}{r} = 0

静磁场的散度

B(x)=μ04πJ(x)×rr3dV=μ04πJ(x)×1rdV=μ04π×J(x)rdV=μ04π×J(x)rdV=μ04π×A\begin{aligned} \vec{B}(\vec{x}) &= \frac{\mu_0}{4\pi}\int \frac{\vec{J}(\vec{x'})\times \vec{r}}{r^3}dV'\\ &= -\frac{\mu_0}{4\pi}\int \vec{J}(\vec{x'})\times \nabla \frac{1}{r} dV'\\ &= \frac{\mu_0}{4\pi}\int \nabla \times \frac{\vec{J}(\vec{x'})}{r}dV'\\ &= \frac{\mu_0}{4\pi} \nabla \times \int \frac{\vec{J}(\vec{x'})}{r}dV'\\ &= \frac{\mu_0}{4\pi} \nabla \times \vec{A} \end{aligned}

其中A\vec{A}是磁矢势

A=μ04πJ(x)rdV\vec{A} = \frac{\mu_0}{4\pi}\int \frac{\vec{J}(\vec{x'})}{r}dV'

B=(×A)=0\nabla \cdot \vec{B} = \nabla \cdot (\nabla \times \vec{A}) = 0

磁场是无源场

静磁场的旋度

×B=×(×A)=(A)2A\nabla \times \vec{B} = \nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}

先考虑分解式的第一项

A=μ04πJ(x)rdV=μ04πJ(x)1rdV=μ04π1rJ(x)dV=μ04π1rJ(x)dVμ04πJ(x)rdV=μ04πJ(x)rdV=μ04πJ(x)rdS=0\begin{aligned} \nabla \cdot \vec{A} &= \frac{\mu_0}{4\pi}\nabla \cdot \int \frac{\vec{J}(\vec{x'})}{r}dV' = \frac{\mu_0}{4\pi}\int \vec{J}(\vec{x'})\cdot \nabla \frac{1}{r}dV'\\ &= -\frac{\mu_0}{4\pi}\int \nabla' \frac{1}{r} \cdot \vec{J}(\vec{x'})dV'\\ &= \frac{\mu_0}{4\pi}\int \frac{1}{r}\nabla' \cdot \vec{J}(\vec{x'})dV' - \frac{\mu_0}{4\pi}\int \nabla' \cdot \frac{\vec{J}(\vec{x'})}{r}dV'\\ &= -\frac{\mu_0}{4\pi}\int \nabla' \cdot \frac{\vec{J}(\vec{x'})}{r}dV'\\ &= -\frac{\mu_0}{4\pi}\oint \frac{\vec{J}(\vec{x'})}{r} \cdot d\vec{S}=0\\ \end{aligned}

最后一步考虑到S内部是包含所有的电流的,所以积分为0
接下来考虑分解式的第二项

2A=μ04π2J(x)rdV=μ04π2J(x)rdV=μ04πJ(x)21rdV=4πμ04πJ(x)δ(xx)dV=μ0J\begin{aligned} \nabla^2 \vec{A} &=\frac{\mu_0}{4\pi}\nabla^2 \int \frac{\vec{J}(\vec{x'})}{r}dV' = \frac{\mu_0}{4\pi}\int \nabla^2 \frac{\vec{J}(\vec{x'})}{r}dV'\\ &= \frac{\mu_0}{4\pi}\int \vec{J}(\vec{x'})\cdot \nabla^2 \frac{1}{r}dV'\\ &= -\frac{4\pi\mu_0}{4\pi}\int \vec{J}(\vec{x'})\cdot \delta(\vec{x}-\vec{x'}) dV'\\ &= -\mu_0 \vec{J} \end{aligned}

所以

×B=μ0J\nabla \times \vec{B} = \mu_0 \vec{J}

并且有

lBdl=S(×B)dS=μ0SJdS\oint_l \vec{B} \cdot d\vec{l} = \int_S (\nabla \times \vec{B}) \cdot d\vec{S} = \mu_0 \int_S \vec{J} \cdot d\vec{S}

这是经典的Ampere环路定理

磁矢势有

2A=μ0J\nabla^2 \vec{A} = -\mu_0 \vec{J}

这是矢量Poisson方程